2.2 Notes Introduction to Limits using Graphs and Tables:

Example 1: Use the graph of $f(x)$ above to find the following values:
a.) $f(-2)$
b.) $f(-1)$
c.) $f(1)$
d.) $f(4)$

Limit of a Funciton:

Suppose the function f is defined for all x near a except possibly at a. If $f(x)$ is arbitrarily close to L for all x sufficiently close (but not equal) to a, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say the limit of $f(x)$ as x approaches a equals L.

Example 2: Use the graph of $f(x)$ above to find the following values:
a.) $\lim _{x \rightarrow-2} f(x)=$
b.) $\lim _{x \rightarrow-1} f(x)=$
c.) $\lim _{x \rightarrow 1} f(x)=$
d.) $\lim _{x \rightarrow 4} f(x)=$

One-Sided Limits:

1. Right-sided limit: Suppose f is defined for all x near a with $x>a$. If $f(x)$ is arbitrarily close to L for all x sufficiently close to a with $x>a$, we write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

2. Left-sided limit: Suppose f is defined for all x near a with $x<a$. If $f(x)$ is arbitrarily close to L for all x sufficiently close to a with $x<a$, we write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

Example 3: Use the graph of $f(x)$ above to find the following values:
a.) $\lim _{x \rightarrow-2^{-}} f(x)=$
b.) $\lim _{x \rightarrow-1^{-}} f(x)=$
c.) $\lim _{x \rightarrow 1^{-}} f(x)=$
d.) $\lim _{x \rightarrow 4^{-}} f(x)=$
$\lim _{x \rightarrow-2^{\mp}} f(x)=\quad \lim _{x \rightarrow-1^{+}} f(x)=\quad \lim _{x \rightarrow 1^{+}} f(x)=\quad f(x)=$

*Relationship between One-Sided and Two-Sided Limits

Using tables to approximate limits

Example 4: Use the following table to evaluate $\lim _{x \rightarrow 2} g(x)$, where $g(x)=\frac{x-2}{x^{2}-4}$.

\boldsymbol{x}	1.9	1.99	1.999	2	2.001	2.01	2.1
$\boldsymbol{g}(\boldsymbol{x})$							

2.2 (cont.) Notes Definitions of Limits

Objective: Students will be able to find a limit of a function, including piecewise functions, using numerical and graphical methods.

Opener: What is a limit? Draw a graph that meets the following requirements: $\lim _{x \rightarrow 0} f(x)=3$ and $\lim _{x \rightarrow 2} f(x)=-1$. What would you expect the equation of this function to be? Is your solution the only correct one?

$$
\lim _{x \rightarrow c} f(x)=L
$$

Example 1: Create a graph for $f(x)=\left\{\begin{array}{c}4 \text { if } x \neq-1 \\ -3 \text { if } x=-1\end{array}\right.$.

- \quad Find $f(3)$.
- Find $f(-1)$.
- Find $\lim _{x \rightarrow-1} f(x)$.

Conclusion for functions with one hole:

Example 2: Graph $g(x)=\frac{|x-3|}{x-3}$

- Find $g(2)$.
- Find $g(3)$.
- Find $\lim _{x \rightarrow 2} g(x)$.
- Find $\lim _{x \rightarrow 3} g(x)$. (hint: use a left and right handed limit)

Conclusion for behaviors that differ from the left and the right:

Example 3: $\operatorname{Graph} h(x)=\frac{4}{x^{2}}$

- Find $\lim _{x \rightarrow 0} h(x)$.
- Find $\lim _{x \rightarrow \infty} h(x)$.

Conclusion for unbounded behavior:

Example 4: Find $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$. Use your graphing calculator; x-window to $-0.5 \leq x \leq 0.5$ with intervals of 0.1.

Conclusion for oscillating behavior:

Why is this a technology pitfall?

Common Types of Functions with Nonexistence of a Limit

1. $F(x)$ approaches a different value from the right and the left side of c.
2. $F(x)$ increases or decreases without bound as x approaches c.
3. $F(x)$ oscillates between two fixed values as x approaches c.

The Squeeze Theorem (read this on your own)

- If two functions squeeze together at a particular point, then any function trapped between them will get squeezed to that same point.
- The Squeeze Theorem deals with limit values, rather than function values.
- The Squeeze Theorem is sometimes called the Sandwich Theorem or the Pinch Theorem.

Graphical Example

In the graph shown, the lower and upper functions have the same limit value at $x=a$. The middle function has the same limit value because it is trapped between the two outer functions.

The middle function is squeezed to L as x approaches a.

Definition of the Squeeze Theorem:

Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an open interval about a (except possibly at a itself).
Further, suppose

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L .
$$

Note that the exception mentioned in the statement of the theorem is because we are dealing with limits. That means we're not looking at what happens at $x=a$, just what happens close by.

Example 1

Suppose there are three functions such that $f(x) \leq g(x) \leq h(x)$ when x is near 2 .
Further, suppose $f(x)=-\frac{1}{3} x^{3}+x^{2}-\frac{7}{3}$ and $h(x)=\cos \left(\frac{\pi}{2} x\right)$ (with x measured in radians).
Determine $\lim _{x \rightarrow 2} g(x)$
Solution
Step 1) Find $\lim _{x \rightarrow 2} f(x) . \quad$ Step 2) Find $\lim _{x \rightarrow 2} h(x)$.

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2}\left(-\frac{1}{3} x^{3}+x^{2}-\frac{7}{3}\right) \\
& =\left(-\frac{1}{3}(2)^{3}+(2)^{2}-\frac{7}{3}\right) \\
& =\left(-\frac{8}{3}+4-\frac{7}{3}\right) \\
& =-1
\end{aligned}
$$

Step 3) Conclusion
Since $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} h(x)=-1$, the Squeeze Theorem guarantees $\lim _{x \rightarrow 2} g(x)=-1$ as well.

2.3 Notes Techniques for Computing Limits

Objective: Students will be able to evaluate limits analytically.
Continuous Functions are well-behaved and can be evaluated for a limit over their domains by using substitution:

- Constant Functions
- Polynomial Functions
- Rational Functions
- Radical Functions
- Trig Functions
- Composite Functions of other well-behaved functions

Examples: Find each limit, if possible.

1) $\lim _{x \rightarrow 16} \frac{12(\sqrt{x}-3)}{x-9}$
2) $\lim _{x \rightarrow 3} \sin \frac{\pi x}{2}$
3) $\lim _{x \rightarrow-25} \sqrt[3]{x+1}$

Explore: If $\boldsymbol{f}(\boldsymbol{x})=\frac{x^{2}-3 x+2}{\boldsymbol{x}-1}$, then find $\lim _{x \rightarrow 1} f(x)$ in the following manners:
a) substitution
b) graphically
c) analytically

Let c be a real \# and $f(x)=g(x)$ for all $x \neq c$ in an open interval containing c. If $\lim _{x \rightarrow c} g(x)$ exists, then $\lim _{x \rightarrow c} f(x)$ is the same value.

2 methods for finding the limit analytically when \boldsymbol{c} is not in the domain:

1) Rewrite the function so that the undefined value is reduced out.
a. Factor
b. Simplify Complex Fractions
2) Rationalize the numerator.

Examples: Find the requested limit analytically,

1) $\lim _{x \rightarrow-b} \frac{(x+b)^{7}+(x+b)^{10}}{4(x+b)} \quad$ 2) $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$

Example:

Find constants b and c in the polynomial $p(x)=x^{2}+b x+c$, such that $\lim _{x \rightarrow 2} \frac{p(x)}{x-2}=6$. Are the constants unique?

2.3 (Day 2): Special Trig Limits

Memorize these: Two special trig limits...

- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
- $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

Examples:

1) $\lim _{x \rightarrow 0} \frac{3(1-\cos x)}{x}$
2) $\lim _{x \rightarrow 0} \frac{\sin x}{\tan x}$
3) $\lim _{x \rightarrow 0} \frac{\sin x}{3 x}$
4) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{7 x}$

2.4 Notes (same day as 2.3 Day 2): Infinite Limits

Objective: Students will be able to determine if a function has an infinite limit while identifying vertical asymptotes.

Examples: Consider the following functions. Identify any vertical asymptotes, and find the requested limits.

1) $f(x)=\frac{3}{x-4}$
a) $\lim _{x \rightarrow 4^{-}} f(x)$
b) $\lim _{x \rightarrow 4^{+}} f(x)$
c) $\lim _{x \rightarrow 4} f(x)$
2) $g(x)=\frac{-3}{(x+2)^{2}}$
a) $\lim _{x \rightarrow-2^{-}} g(x)$
b) $\lim _{x \rightarrow-2^{+}} g(x)$
c) $\lim _{x \rightarrow-2} g(x)$
3) $h(x)=\tan x$
a) $\lim _{x \rightarrow \frac{\pi^{-}}{2}} h(x)$
b) $\lim _{x \rightarrow \frac{\pi}{}^{+}} h(x)$
c) $\lim _{x \rightarrow \frac{\pi}{2}} h(x)$

Vertical Asymptotes: Summary

Roots of factors on the denominator that are not repeated in the numerator (where the domain is undefined.)

Examples: Use algebra to identify the vertical asymptotes for each function. Verify your conclusion with your graphing calculator.
4) $g(x)=\frac{4 x^{2}+4 x-24}{x^{4}-2 x^{3}-9 x^{2}+18 x}$
5) $h(x)=\frac{-2}{\sin x}$

Properties of Infinite Limits:

Given that $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=L$

- $\lim _{x \rightarrow c} f(x)+g(x)=\infty$
- $\lim _{x \rightarrow c} f(x) \cdot g(x)=\infty, L>0$
- $\lim _{x \rightarrow c} f(x) \cdot g(x)=-\infty, L<0$
- $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$

Example:

6) $\lim _{x \rightarrow 0} \frac{x+2}{\cot x}$
7) $\lim _{x \rightarrow 0^{-}} x^{2}-\frac{1}{x}$

If-Time Practice: Find the requested limit analytically.

1) Find $\lim _{x \rightarrow 0}\left(x+4+\frac{(1-\cos x)}{x}\right)$.
2) Find $\lim _{x \rightarrow 0} \frac{2 \sin 3 x}{5 x}$
3) Given $f(x)=|x-1|$

- Write a piecewise function for $f(x)$.
- Graph this function by analytical methods.
- Find $\lim _{x \rightarrow 1} f(x)$

4) Draw the graph if the following conditions exist:

- $f(x)$ if $f(-3)=-2$
- $\lim _{x \rightarrow 0} f(x)=5$
- $f(0)$ is undefined
- $\lim _{x \rightarrow 2} f(x)=f(2)=1$

Is your graph the only correct solution?

For \#5-6: Use algebra to identify the vertical asymptotes for each function. Verify your conclusion with your graphing calculator.
5) $g(x)=\frac{x^{2}+10 x-24}{9 x^{2}-18 x}$
6) $h(x)=\frac{-2}{\tan x}$

For \#7 - 8: Find each limit, if possible.
7) $\lim _{x \rightarrow 0} \frac{x+1}{\tan x}$
8) $\lim _{x \rightarrow 0^{-}} x^{2}+\frac{1}{x}$

2.6 Notes: Continuity

Objective: What is the connection between continuity, limits, and the existence of $f(x)$?
Definition of continuity: A function $f(x)$ is continuous at c if $\lim _{x \rightarrow c} f(x)$ exists and $\lim _{x \rightarrow c} f(x)=f(c)$. Thus, the following three expressions must be equal:

$$
\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=f(c)
$$

Exploration: For each situation below, give examples where the statement is true but the function is not continuous (draw a sketch).

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)$ and $f(c)$ both exist

Some functions (especially rational) are continuous on an open interval, rather than everywhere continuous. There are two main types of discontinuities:

- Removable (holes)
- Non-removable (asymptotes or jump discontinuities)

Examples: For each function, discuss the continuity.

1) $f(x)=\frac{x-1}{x^{2}+x-2}$
2) $f(x)=\frac{|x+2|}{x+2}$

Examine example 2. At the point of discontinuity, does the limit exist? Would it exist from only one side?

One-sided limits:
From the right
From the left

Examples: Find each one-sided limit:
3) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x-2}}{x-4}$ (No calculator!)
4) $\lim _{x \rightarrow 2^{+}}\left\{\begin{array}{c}3 x-4 \text { if } x \leq 2 \\ x^{2}-3 x+12 \text { if } x>2\end{array}\right.$

A limit exists only if $\lim _{x \rightarrow c^{-}} f(x)=\mathrm{L}=\lim _{x \rightarrow c^{+}} f(x)$.

Example 5: Find $\lim _{x \rightarrow 3}\left\{\begin{array}{c}-4 x+7 \text { if } x \leq 3 \\ x^{2}-x+1 \text { if } x>3\end{array}\right.$ if possible.

Reminder: Definition of Continuity:

A function is continuous at $\boldsymbol{x}=\boldsymbol{c}$ on the closed interval $[\mathbf{a}, \mathbf{b}]$ if it is continuous on the open interval (a, b) and $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=f(c)$.

Example 6: Use the definition of continuous to decide if $h(x)$ is continuous at $x=2$.
6a) $h(x)=\left\{\begin{array}{c}-\frac{1}{2} x-e^{x-2} \text { if } x<2 \\ x^{2}-6 \text { if } x>2\end{array}\right.$
6b) $h(x)=\left\{\begin{array}{c}-\frac{1}{2} x-e^{x-2} \text { if } x \leq 2 \\ x^{2}-6 \text { if } x>2\end{array}\right.$

Example 7: Find the constant a so that the function is continuous on the entire real line, except for $x=0$.

$$
f(x)=\left\{\begin{array}{l}
\frac{4 \sin x}{x}, \text { if } x<\frac{\pi}{2} \\
a-2 x, \text { if } x \geq \frac{\pi}{2}
\end{array}\right.
$$

Intermediate Value Theorem (IVT): If f is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ and L is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[\mathrm{a}, \mathrm{b}]$ such that $f(c)=L$.

Example 8: Explain why the function has a zero in the given interval.

$$
g(x)=-4 x+3 \text { for the interval }\left[-\frac{5}{2}, 4\right]
$$

Example 9: Evaluate the following limit

$$
\lim _{x \rightarrow \infty} \frac{\tan ^{-1} x}{x}
$$

If-time practice: For each function, discuss the continuity.

1) $f(x)=\frac{x-9}{x^{2}-8 x-9}$
2) $f(x)=\frac{|x-2|}{x-2}$

2.5 Notes: Limits to Infinity

1) Explore the graph: $f(x)=\frac{x-3}{x-2}$
a) Identify any asymptotes.
b) $\lim _{x \rightarrow 2} f(x)$
c) $\lim _{x \rightarrow \infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$

Note: $\frac{\infty}{\infty}$ is called an indeterminate form. You can find the limit by identifying the horizontal asymptote (or by dividing each term by x.)

The idea of limits at infinity is based on how quickly functions grow.

$$
y=\ln x \quad y=x^{34} \quad y=e^{x}
$$

Slowest growth \longrightarrow fastest growth

Limits at infinite occur at horizontal asymptotes. Review of HA for rational functions:

- Degree of numerator and denominator are the same.
- Degree of denominator is larger.
- Degree of numerator is larger.

Note: A graph can have at most 2 horizontal asymptotes... one to the right and one to the left.

Limits at Infinity:

If r is a positive rational number and c is any real number, then

- $\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0$
- $\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0$

Example: Find $\lim _{x \rightarrow \infty}\left(4+\frac{3}{x}\right)$

Examples: For each function, a) identify all asymptotes. Also, find the limits to infinity and negative infinity by using horizontal asymptotes or rates of growth.
3) $f(x)=\frac{2 x}{9-x^{2}}$
4) $b(x)=\frac{3-2 x^{2}}{3 x-1}$

Examples: Find the following limits analytically, and then verify with graphing calc.
5) a) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}$
b) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}$
c) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-8}}{3 x}$

AP Calc AB Notes

6) Find the limit, if possible: $\lim _{x \rightarrow \infty} \cos x$
7) Find each limit, if possible:
a) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}+2}}{3-5 x}$
b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+2}}{3-5 x}$
